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* Machine Leaning produces dynamic solutions. However, most
machine learning is still done manually.

« In this research, we provide an Automated Machine Learning
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One-layered Framework

Overview of Obtaining
Complexity-based Clusters

Most Meta-learners available today follow
this prototypical one-layered framework.

Built over the whole meta-dataset (D*).

Only vary in terms of the Meta-features (X),
Meta-labels (Y) and/or Meta-learner (A*).

We hypothesise that the complexity of a
dataset (D) is key in determining the
performance of a corresponding model (M),

The complexity based clusters will give
more specific algorithm selection models
(M2i) for each cluster.

Artificial Dataset Generation
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Cell-based Measure

We introduce a new measure to calculate the complexity of
the dataset based on the size of the decision boundary.

After dividing the dataset into a grid, count the number of
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Thus, m is correlated with the cell-based measure and is indicative
of the complexity of the dataset.

Meta-feature Selection Final Experimental Setup

include 25 x 25 evenly distributed points in the 2D Euclidean Space. The
complexity for all of these datasets vary based on the parameter m.

Clustering with Learning Curves

« Learning Curves allow us to measure
complexity of a dataset relative to an
algorithm.

Datasets are clustered based on 20

As the generation of leaming curves is computationally
expensive, meta-features are chosen for determining cluster
membership
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We observed that each complexity based cluster corresponds to a

certain range of m.

Result and Analysis

Now, we can cluster through kmeans using these 11

meta-features.

* The proposed two layered model is then compared to the best model of
the prototypical one-layered model
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Abstract

To maximise the accuracy of a learning model for a problem there is a need to select an
appropriate algorithm. Thus, the ability to predict the performance of an algorithm is
imperative in the algorithm selection problem. This paper proposes a novel two-layered
approach in which the complexity of a dataset plays a key role. In the first layer a category of
complexity is assigned to the dataset and then in the second layer the superior algorithm is
determined. In order to do this, we attempt to define the complexity of the dataset by
introducing a new cell-based complexity measure. Then, we evaluate the applicability of that
measure by comparing it to widely used complexity measures found in the literature review.
Using our definition of complexity, we then validate the idea of using learning curves to
capture the complexity of a dataset and generate complexity specific categories. Finally, we
evaluate the whole model on UCI datasets to prove that our proposed two-layered model is a

practical substitute to the meta-learners available today.
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Research Plan

(a) Rationale

Machine learning is the study of models in which the computer uses training data to get better
at a problem. Meta-learning, a widely researched branch of machine learning is concerned
with learning about the learning process itself. The No Free Lunch Theorems necessitate the
need of algorithm selection and given the number of algorithms available it can be a
time-consuming task. Moreover, there is a growing need for methods to works as “black
boxes”, where no human intervention is required like WEKA in Java or scikit in Python.
Thus, a lot of resources have been devoted to finding an effective way to select the best
performing algorithm. The currently available one-layered metalearners predict the
performance of an algorithm based on a performance metric. In this work, we propose a
novel approach and suggest a two-layered framework for the algorithm selection

meta-learner.

(b) Research Question

We hypothesise that the complexity of the dataset is a key aspect in determining the
performance of an algorithm, thus approximating complexity before the prediction of the
algorithm will help produce an accurate model for algorithm selection. In our proposed two
layered framework: In the first layer the category of complexity will be determined for the
dataset and then in the second layer the algorithm will be predicted. To approximate the
complexity of the dataset, we use learning curves. Thus, we aim to check if the categorisation
of datasets based on complexity using learning curves gives an accurate algorithm selection

model.

(c) Procedure

To test the hypothesis, we generate 800 artificial datasets of varying complexity. We validate
their complexity by defining a cell-based complexity measure. After which, based on the
learning curve points of the datasets we generate clusters to investigate if they are indicative
of the complexity of the dataset. Once validated, we create the two-layered framework which

first determines the complexity category a dataset belongs to and then predicts the superior
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algorithm. This model is then tested against a baseline one-layered meta-learner on real

datasets from the UCI repository.
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Project Report
1. Introduction

According to the No Free Lunch Theorems, no one algorithm can give the best performance
over every classification problem!!, which necessitates algorithm selection. Since the seminal
work by Rice (1976), a lot of research has been done in the field of metalearning, especially
algorithm selection. Given the plethora of new algorithms, the task of choosing an algorithm
has become complicated and time-consuming. Thus, there is a growing need for fully
automated models that do not require human intervention, shifting the focus to Automatic
Machine Learning (AutoML).! Although the machine learning literature has proposed many
algorithm selection techniquesP™, most of those are single layered frameworks which
directly predict the algorithm based on certain meta-features. This paper proposes a novel
approach, a two-layered mechanism: In the first layer, the complexity of the dataset is

determined; then, in the second layer, a superior algorithm is predicted.

In our first experiment, we define the complexity of a dataset by introducing our own
cell-based complexity measure. Next, we will check the applicability of this measure by
deriving a relationship with other complexity measures found in literature review. Then,
using our definition of complexity we will validate the learning curves based complexity
categories on artificially generated datasets. Once validated, we will empirically prove the
practicality of our two layered framework by testing it on real datasets from the UCI

repository.

2. Algorithm Selection: Related Work and a New Perspective

R Learning R Evaluation
Dataset (D) Model (M) Method (E)
Meta-Features Expected
X) Performance (Y)
Algorithm Selection Model

Figure 1. Algorithm selection framework

Adapted from Rice (1976), Fig 1 depicts the algorithm selection framework in which there is

a problem space (P) which contains datasets diE D; a performance measure (Y) of di is
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calculated for a learning model which is then mapped to relevant dataset characteristics, or
meta-features (X) by a meta-learner. Various kinds of meta-learners can be found in
literature™®), and typically, all these meta-learners are one layered i.e. these predict the best
algorithm based on a performance metric (accuracy, execution time, etc). The meta-learner’s
predictive model utilises meta-features, which are quantities derived from 6 main categories:
simple (e.g. number of attributes or classes), statistical (e.g. skewness, kurtosis of any
continuous attributes), information-theoretic (e.g. class entropy, mutual information between
attributes and class - for discrete attributes), landmarking ( e.g. Naive Bayes), model-based (

e.g. height of the decision tree), and complexity (e.g.approximating the decision boundary).!”!

We hypothesise that the complexity of a dataset is key in determining the accuracy of a model
for an algorithm. Moreover, both share an inverse relationship for a specific algorithm: as the
complexity of the dataset increases, the accuracy of a model decreases. A recent work®
surveys all the complexity meta-features based on different structures like clusters and graphs
but still only vaguely define the type of complexities being measured. Building on the factors
of the complexity of classification problems given by Ho and Basu (2002)"), we define
specific categories of complexity:
1. Complexity of Decision Boundary: A boundary estimates the difficulty in separating
the classes and thus assigning a class to the new data points
2. Imbalance: Representation of each class in the dataset
3. Spatial Distribution of the data
a. Class-wise coverage: measures the distribution of the data within each class
b. Overall coverage of the space: measures the distribution of the whole dataset
e.g. sparse datasets are more complex
For the purposes of this paper, we define data complexity based on the model of the
algorithm itself, as it will be more practical for its application in the algorithm selection
problem. To obtain this we use the points on the learning curve which will capture the key

aspects of the complexity of the dataset relative to an algorithm.

3. Clustering Datasets Based on Complexity
We want to obtain clusters of datasets which are indicative of their member dataset’s
complexity. Complexity is an important determinant in the performance of an algorithm, thus

complexity specific clusters will allow datasets which have similar algorithm performance to
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be in the same group. To verify the existence of such categories of complexity based on
learning curves we experiment on 800 artificially generated binary datasets. These datasets
include 25 x 25 data points evenly distributed in the 2D euclidean space. For each of the
following groups, 200 datasets of each type were generated.

e Group A: The instances are categorised basedon weighted all neighbours kNN.The
model is trained on m randomly generated pivot instances which are classified
beforehand.

e Group B and Group C: m linear separators with a common intersection at the centre
or the corner are used to classify the instances.

e Group D: m linear separators which are orthogonal to the axes are used to classify the

instances

00 o1 02 o3 os 05 06 o7 o8

Figure 2. Group A, B, C and D of the artificial datasets

All these datasets vary in complexity based on a certain parameter m, for example, the
complexity increases as the number of separators increases. To verify this relation between
the parameter m and the complexity of the dataset we define dataset complexity in terms of a
decision boundary. Intuitively speaking, greater size of this boundary would mean that the
dataset is more complex. We calculate this boundary by dividing the instance space into a
grid, where each cell contains only one instance, and counting the number of edges which are
shared between cell of opposite classes. The cell-based complexity was found to be correlated
with the following complexity measures associated with measuring the complexity of

decision boundary™ (Appendix A).

Metafeature Relation Metafeature Relation
Fraction of Borderline Points Direct Fraction of Hyperspeheres Direct
Ratio of Intra/Extra Class Nearest Direct Local set average cardinality Inverse

Neighbour Distance

Error rate fo the nearest neighbour Direct Average Density of Network Inverse
classifier

Non linearity of NN Classifier Direct
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Table 1. Relation between cell-based complexity measures and other complexity measures
The parameter m was found to be indicative of the complexity of the dataset as it was

correlated with the cell based complexity measure.

cellgased Complexiy Messure
el Based Complexity M

:
cell Based compey wesurs
ell Based Complexity M

8

25 o0 25 0 75 00 15 150 175 200 25 50
neter

75 100 15 150 15 200 25
KNN Dataset Paramet arameter

50 75 100 125 150 15 200 50 75 00 125 150 175 200
Linear Centre Datasat Parameter Orthogonal Dataset P: Lingar Comer Dataset Parameter

Figure 3. Cell based complexity measure vs m

(10] (plots the rate at which

To obtain the complexity specific categories, learning curves (LC)
the model learns - accuracy vs sample size) are generated for all artificial datasets. To lower
the computational cost of the generation only 20 points are plotted. To investigate whether
categories based on learning curves capture the complexity of a dataset, artificial datasets are
clustered based on the 20 points of LC for Decision Tree, Random Forest and k-Nearest
Neighbour using k-means from the scikit python library. The parameter k for the algorithm is
selected so as to minimise the mean squared error of the cluster points to their centroid. After
observing the prevalence of certain ranges of mfor each cluster (lower values of mwere seen
for less complex clusters), it is established that these clusters are indicative of the complexity

of the dataset, and thus clustering based on learning curves is a viable method to get

complexity-specific categories.

Decision Tree Random Forest KNN Decision Tree Random Forest KNN
28 4 5012 84 512 34 5 12 38 45 12 8 4 5 12 3|4 5
Linear Corner Seperators Linear Centre Seperators

26 0 |65 35 25 0 00 725 20 25|00 725 27 |00 00 00 15 0.0 425 850 25 00 | 00 425|625 50 00 425 5 |25 00| 00

610 0 0 85 175 0 00 50 8.0 100 00 150 725 125 00 00 59 00 25 400 55 50| 00 60 400 500 650|126 %5 45 0 0

10-14 000 2 60 15 00 00 400 50 100 0 27 | 5 126 00 913 00 00|75 7256 200 00 00100 700 20 00 75600 260 75
1418 0 0 10 45 475 00|00 175 475 360 0 |125 875 375 125 1817 00 00|50 475 475 00 25| 25 625 425 0 | 50 450 250 225
18-22 0 0 | 76 40 825 00 | 00 150 47537156 0 0 350|450 75 1721 00 00 50 125 85|00 00| 60 225 725 00 50 100 500 350

Orthogonal Seperators KNN pivot instances

15 260 750 00 00 0 35|60 25 00 00 260 400300 0 00 24 0|4 65 25 0 0 4 8 0 0 45 68 00 0

59 876 125 00 00 0 725 25|60 160 50 00 75 325 825 75 4082 0| 0 35 65 0 0 0 &5 65 0 0 25 6|0 0

913 80 100 00 60 0 600 00| 25 150 325 00 00 200 6 260 82-122 00 0 8 2 0 0 0 75 RS 00 5665 0

1347 85 125 00 50 0 |35 25| 25 175 450 00 25 175 300 500 122-162 0|0 0 35 675 0 0 0 45685 0 0 0 B A
1721 85 100 00 75 0 425 00| 60 800 25 00 00 300 875 56 162-202 00 0 &6 9% 0 0 0 65 % 0 0 0 45 85

After literature review, we chose 6 widely used learning algorithms to diversify our algorithm

Table 2. Clusters and their corresponding values of m
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portfolio. The algorithm space consists of Decision Tree (DT), Random Forest (RF), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Naive Bayes (NB),
and k-Nearest Neighbours (kNN). Default parameters were used for all the following R
packages: €1071,MASS, Rweka and kknn'",

The clusters based on learning curves were generated for all algorithms. These clusters
represented the algorithm-specific complexity categories of the dataset, for example, the
lowest complexity cluster in decision tree only had orthogonal datasets since decision trees
work best on those, but so was not the case for the Random Forest clusters. Thus, to eliminate
this algorithm bias, we used the cluster membership labels of each algorithm as meta-features
of the dataset and clustered again using k-means, thus obtaining a general set of 7 clusters. To
validate that the information of the key aspects of complexity captured in the algorithm
specific cluster labels is not lost in the second clustering process we calculated the mutual
information between each algorithm specific cluster label and the final label of the general
set. The high mutual information score shows that the general set was suggestive of the

complexity of its member datasets.

Algorithm = Mutual Info. | Algorithm Mutual Info.

KNN 0.606 LDA 0.678
RF 0.601 DT 0.623
NB 0.613 QDA 0.561

Table 3. Mutual Information results for each algorithm specific cluster label

Determining the complexity based cluster that the dataset belongs to might be
computationally expensive through the generation of learning curves, thus we can find the
meta-features which are correlated to the membership of the dataset to the cluster. To conduct
experiments, we chose 55 meta-features (Appendix B) from literature review which included
statistical meta-features and information theoretic meta-features (19), decision tree based

meta-features (14) and complexity meta-features (22).

For the meta-feature selection, a greedy approach was used rather than a brute force variant
as its computationally expensive to go through 2*° possible sets. The datasets are first
clustered using k-means (k=7) for each meta-feature. The mutual information between these
cluster labels and the general set labels is calculated. Then, the meta-feature with the highest

mutual information is selected. This meta-feature is paired with all the other meta-features
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and the highest one is selected again. This process is repeated till a meta-feature set with the

highest mutual information is obtained.

Metafeature Set Mutual Info.

Joint Entropy, Mutual Info Max, N1, N2, T1,

LSCAvg, L2, L3, Density, ClsCoef, Hubs 0.637

Table 4. set of meta-features and their corresponding mutual information score

Now, these 11 chosen meta-features (9 complexity measures and 2 statistical and information
theoretics) can be used to allocate a cluster to the dataset in the first layer, after which in the

second layer the superior algorithm can be predicted.

4. Algorithm Selection via Complexity Classification

To study the utility of the double-layered framework, we conducted an experiment on UCI
datasets. To expand our problem space, we utilised the Error-Correcting Output Code
ensemble!'! to convert multiclass datasets into many binary datasets, thus obtaining 9139
UCI datasets to experiment on. For the expertise space, there were three possible outcomes:
algorithm 1 being superior, algorithm 2 being superior or a case of draw. These three
outcomes were used as labels and were computed for all pairs of the 6 algorithms (15
expertise spaces) through a two-tailed t-test by random sampling 100 times for all UCI
datasets. Then, the 11 chosen meta-features were computed to classify the UCI datasets into
their respective complexity cluster through k-means. An overarching 10 x 10 fold cross
validation model was built, and in each iteration the folds were divided into training (9 folds)
and testing (1 fold) sets. Then, each training set was further divided into a new training and
validation set to select the best performing algorithm selection model by choosing a value of
k for kNN and a meta-feature set out of the following 3 options:

1. Set A: Classical (statistical and information theoretic) meta-features

2. Set B: Decision tree based meta-features

3. Set C: Complexity based meta-features

Each complexity specific algorithm selection model for a certain meta-feature set is trained in
a wrapper like kNN model where the value of k varies from 2 till 10. The best performing
model out of all the meta-features and the corresponding k value is chosen by comparing the
accuracies of all the models when tested on the validation set. The best performing

complexity specific algorithm selection model for each cluster (2 layered) is then compared
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to the baseline accuracy (1 layered), which is the best algorithm selection model over all the

datasets for each algorithm pair by calculating the accuracy on the test set.

Algorithm Pair Baseline Cluster Algorithm Pair Baseline Cluster
Dt Knn 81.625 82.862 Knn Rf 81.269 82.58
Dt Lda 82.76 84.004 Lda Nb 85.471 85.886
Dt Nb 88.137 88.909 Lda Qda 84.108 84.425
Dt Qda 89.487 90.225 Lda Rf 90.672 90.928
Dt Rf 88.958 88.95 Nb Qda 84.508 84.963
Knn Lda 84.656 85.62 Nb Rf 96.036 95.965
Knn Nb 91.776 92.161 Qda Rf 97.682 97.536
Knn Qda 91.122 91.307

Table 5. The two-layered vs one-layered framework

Based on our results we can conclude that the accuracy of the complexity specific
two-layered model is either comparable or an improvement to the baseline one layered
model. Hence, our proposed two-layered framework is a practical substitute for the algorithm

selection problem.

Algorithm Pair Baseline Accuracy Cluster 1 Cluster 2 Cluster 3 Cluster 4
Dt Knn 81.625 89.356 86.928 79.245 73.705
Dt Lda 82.76 94.117 81.528 80.341 76.518
Dt Nb 88.137 92.178 91.111 86.387 77.894
Dt Qda 89.487 96.218 91.273 87.037 82.608
Dt Rf 88.958 97.297 95.205 88.113 81.111
Knn Lda 84.656 92.118 90.74 88.172 77.865
Knn Nb 91.776 94.805 94.267 93.827 89.256
Knn Qda 91.122 96.398 95.041 91.304 83.516
Knn Rf 81.269 93.627 85.84 71.428 67.283
Lda Nb 85.471 95.731 92.561 83.471 81.912
Lda Qda 84.108 95.031 92.436 84.955 74.742
Lda Rf 90.672 96.666 94.805 91.411 82.52
Nb Qda 84.508 88.378 86.784 83.798 67.741
Nb Rf 96.036 98.138 97.457 96.774 91.279
Qda Rf 97.682 99.163 97.686 97.546 95.121

Table 6. Cluster wise accuracy (green: equal or more than the baseline, red: less than the baseline)

That said, in the cluster sets, although for all problems, two or more clusters performed
significantly better than the baseline accuracy, the other clusters did not. From this, we may
infer that the better performing clusters contain key representative datasets which have
distinct complexities, and consequently, further hypothesise that the clusters with poorer

performance inadequately characterise specific categories of dataset complexity.

5. Future Work

The two-layered framework has yielded results that are slightly better than baseline.
However, as noted certain cluster specific models perform worse. Thus, our future work
includes examining these clusters to analyse their characteristics and acquire an insight about

the key datasets which represent complexity.
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Appendix B

MAO14

Approximating Dataset Complexity based on Learning Curves

Classical meta-features

Decision tree

meta-features

Complexity

meta-features

ClassEnt treewidth overlapping.F1
AttrEntMin treeheight overlapping.Flv
AttrEntMean NumNode overlapping.F2
AttrEntMax NumLeave overlapping.F3

JointEnt maxLevel overlapping.F4
MutInfoMin meanLevel neighborhood.N1
MutInfoMean devLevel neighborhood.N2
MutInfoMax ShortBranch neighborhood.N3

EquiAttr meanBranch neighborhood.N4
NoiseRatio devBranch neighborhood.T1

StandardDevMin maxAtt neighborhood.LSCAvg
StandardDevMean minAtt linearity.LL1
StandardDevMax meanALtt linearity.L.2
SkewnessMin devAtt linearity.L3
SkewnessMean - dimensionality. T2
SkewnessMax - dimensionality.T3
KurtosisMin - dimensionality. T4
KurtosisMean - balance.C1
KurtosisMax - balance.C2

network.Density

network.ClsCoef

network.Hubs




