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Abstract

To maximise the accuracy of a learning model for a problem there is a need to select an

appropriate algorithm. Thus, the ability to predict the performance of an algorithm is

imperative in the algorithm selection problem. This paper proposes a novel two-layered

approach in which the complexity of a dataset plays a key role. In the first layer a category of

complexity is assigned to the dataset and then in the second layer the superior algorithm is

determined. In order to do this, we attempt to define the complexity of the dataset by

introducing a new cell-based complexity measure. Then, we evaluate the applicability of that

measure by comparing it to widely used complexity measures found in the literature review.

Using our definition of complexity, we then validate the idea of using learning curves to

capture the complexity of a dataset and generate complexity specific categories. Finally, we

evaluate the whole model on UCI datasets to prove that our proposed two-layered model is a

practical substitute to the meta-learners available today.
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Research Plan

(a) Rationale

Machine learning is the study of models in which the computer uses training data to get better

at a problem. Meta-learning, a widely researched branch of machine learning is concerned

with learning about the learning process itself. The No Free Lunch Theorems necessitate the

need of algorithm selection and given the number of algorithms available it can be a

time-consuming task. Moreover, there is a growing need for methods to works as “black

boxes”, where no human intervention is required like WEKA in Java or scikit in Python.

Thus, a lot of resources have been devoted to finding an effective way to select the best

performing algorithm. The currently available one-layered metalearners predict the

performance of an algorithm based on a performance metric. In this work, we propose a

novel approach and suggest a two-layered framework for the algorithm selection

meta-learner.

(b) Research Question

We hypothesise that the complexity of the dataset is a key aspect in determining the

performance of an algorithm, thus approximating complexity before the prediction of the

algorithm will help produce an accurate model for algorithm selection. In our proposed two

layered framework: In the first layer the category of complexity will be determined for the

dataset and then in the second layer the algorithm will be predicted. To approximate the

complexity of the dataset, we use learning curves. Thus, we aim to check if the categorisation

of datasets based on complexity using learning curves gives an accurate algorithm selection

model.

(c)  Procedure

To test the hypothesis, we generate 800 artificial datasets of varying complexity. We validate

their complexity by defining a cell-based complexity measure. After which, based on the

learning curve points of the datasets we generate clusters to investigate if they are indicative

of the complexity of the dataset. Once validated, we create the two-layered framework which

first determines the complexity category a dataset belongs to and then predicts the superior
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algorithm. This model is then tested against a baseline one-layered meta-learner on real

datasets from the UCI repository.
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Project Report

1. Introduction

According to the No Free Lunch Theorems, no one algorithm can give the best performance

over every classification problem[1], which necessitates algorithm selection. Since the seminal

work by Rice (1976), a lot of research has been done in the field of metalearning, especially

algorithm selection. Given the plethora of new algorithms, the task of choosing an algorithm

has become complicated and time-consuming. Thus, there is a growing need for fully

automated models that do not require human intervention, shifting the focus to Automatic

Machine Learning (AutoML).[2] Although the machine learning literature has proposed many

algorithm selection techniques[3][4], most of those are single layered frameworks which

directly predict the algorithm based on certain meta-features. This paper proposes a novel

approach, a two-layered mechanism: In the first layer, the complexity of the dataset is

determined; then, in the second layer, a superior algorithm is predicted.

In our first experiment, we define the complexity of a dataset by introducing our own

cell-based complexity measure. Next, we will check the applicability of this measure by

deriving a relationship with other complexity measures found in literature review. Then,

using our definition of complexity we will validate the learning curves based complexity

categories on artificially generated datasets. Once validated, we will empirically prove the

practicality of our two layered framework by testing it on real datasets from the UCI

repository.

2. Algorithm Selection: Related Work and a New Perspective

Figure 1. Algorithm selection framework

Adapted from Rice (1976), Fig 1 depicts the algorithm selection framework in which there is

a problem space (P) which contains datasets ; a performance measure (Y) of is𝑑
𝑖 
∈ 𝐷 𝑑

𝑖
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calculated for a learning model which is then mapped to relevant dataset characteristics, or

meta-features (X) by a meta-learner. Various kinds of meta-learners can be found in

literature[5][6], and typically, all these meta-learners are one layered i.e. these predict the best

algorithm based on a performance metric (accuracy, execution time, etc). The meta-learner’s

predictive model utilises meta-features, which are quantities derived from 6 main categories:

simple (e.g. number of attributes or classes), statistical (e.g. skewness, kurtosis of any

continuous attributes), information-theoretic (e.g. class entropy, mutual information between

attributes and class - for discrete attributes), landmarking ( e.g. Naive Bayes), model-based (

e.g. height of the decision tree), and complexity (e.g.approximating the decision boundary).[7]

We hypothesise that the complexity of a dataset is key in determining the accuracy of a model

for an algorithm. Moreover, both share an inverse relationship for a specific algorithm: as the

complexity of the dataset increases, the accuracy of a model decreases. A recent work[8]

surveys all the complexity meta-features based on different structures like clusters and graphs

but still only vaguely define the type of complexities being measured. Building on the factors

of the complexity of classification problems given by Ho and Basu (2002)[9], we define

specific categories of complexity:

1. Complexity of Decision Boundary: A boundary estimates the difficulty in separating

the classes and thus assigning a class to the new data points

2. Imbalance: Representation of each class in the dataset

3. Spatial Distribution of the data

a. Class-wise coverage: measures the distribution of the data within each class

b. Overall coverage of the space: measures the distribution of the whole dataset

e.g. sparse datasets are more complex

For the purposes of this paper, we define data complexity based on the model of the

algorithm itself, as it will be more practical for its application in the algorithm selection

problem. To obtain this we use the points on the learning curve which will capture the key

aspects of the complexity of the dataset relative to an algorithm.

3. Clustering Datasets Based on Complexity

We want to obtain clusters of datasets which are indicative of their member dataset’s

complexity. Complexity is an important determinant in the performance of an algorithm, thus

complexity specific clusters will allow datasets which have similar algorithm performance to
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be in the same group. To verify the existence of such categories of complexity based on

learning curves we experiment on 800 artificially generated binary datasets. These datasets

include 25 x 25 data points evenly distributed in the 2D euclidean space. For each of the

following groups, 200 datasets of each type were generated.

● Group A: The instances are categorised basedon weighted all neighbours kNN.The

model is trained on randomly generated pivot instances which are classified𝑚

beforehand.

● Group B and Group C: linear separators with a common intersection at the centre𝑚

or the corner are used to classify the instances.

● Group D: linear separators which are orthogonal to the axes are used to classify the𝑚

instances

Figure 2. Group A, B, C and D of the artificial datasets

All these datasets vary in complexity based on a certain parameter , for example, the𝑚

complexity increases as the number of separators increases. To verify this relation between

the parameter and the complexity of the dataset we define dataset complexity in terms of a𝑚

decision boundary. Intuitively speaking, greater size of this boundary would mean that the

dataset is more complex. We calculate this boundary by dividing the instance space into a

grid, where each cell contains only one instance, and counting the number of edges which are

shared between cell of opposite classes. The cell-based complexity was found to be correlated

with the following complexity measures associated with measuring the complexity of

decision boundary[8] (Appendix A).



MA014
Approximating Dataset Complexity based on Learning Curves

Table 1. Relation between cell-based complexity measures and other complexity measures

The parameter was found to be indicative of the complexity of the dataset as it was𝑚

correlated with the cell based complexity measure.

Figure 3. Cell based complexity measure vs 𝑚

To obtain the complexity specific categories, learning curves (LC) [10] (plots the rate at which

the model learns - accuracy vs sample size) are generated for all artificial datasets. To lower

the computational cost of the generation only 20 points are plotted. To investigate whether

categories based on learning curves capture the complexity of a dataset, artificial datasets are

clustered based on the 20 points of LC for Decision Tree, Random Forest and k-Nearest

Neighbour using k-means from the scikit python library. The parameter for the algorithm is𝑘

selected so as to minimise the mean squared error of the cluster points to their centroid. After

observing the prevalence of certain ranges of for each cluster (lower values of were seen𝑚 𝑚

for less complex clusters), it is established that these clusters are indicative of the complexity

of the dataset, and thus clustering based on learning curves is a viable method to get

complexity-specific categories.

Table 2. Clusters and their corresponding values of m

After literature review, we chose 6 widely used learning algorithms to diversify our algorithm
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portfolio. The algorithm space consists of Decision Tree (DT), Random Forest (RF), Linear

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Naive Bayes (NB),

and k-Nearest Neighbours (kNN). Default parameters were used for all the following R

packages: e1071,MASS, Rweka and kknn[7].

The clusters based on learning curves were generated for all algorithms. These clusters

represented the algorithm-specific complexity categories of the dataset, for example, the

lowest complexity cluster in decision tree only had orthogonal datasets since decision trees

work best on those, but so was not the case for the Random Forest clusters. Thus, to eliminate

this algorithm bias, we used the cluster membership labels of each algorithm as meta-features

of the dataset and clustered again using k-means, thus obtaining a general set of 7 clusters. To

validate that the information of the key aspects of complexity captured in the algorithm

specific cluster labels is not lost in the second clustering process we calculated the mutual

information between each algorithm specific cluster label and the final label of the general

set. The high mutual information score shows that the general set was suggestive of the

complexity of its member datasets.

Table 3. Mutual Information results for each algorithm specific cluster label

Determining the complexity based cluster that the dataset belongs to might be

computationally expensive through the generation of learning curves, thus we can find the

meta-features which are correlated to the membership of the dataset to the cluster. To conduct

experiments, we chose 55 meta-features (Appendix B) from literature review which included

statistical meta-features and information theoretic meta-features (19), decision tree based

meta-features (14) and complexity meta-features (22).

For the meta-feature selection, a greedy approach was used rather than a brute force variant

as its computationally expensive to go through 255 possible sets. The datasets are first

clustered using k-means (k=7) for each meta-feature. The mutual information between these

cluster labels and the general set labels is calculated. Then, the meta-feature with the highest

mutual information is selected. This meta-feature is paired with all the other meta-features
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and the highest one is selected again. This process is repeated till a meta-feature set with the

highest mutual information is obtained.

Table 4. set of meta-features and their corresponding mutual information score

Now, these 11 chosen meta-features (9 complexity measures and 2 statistical and information

theoretics) can be used to allocate a cluster to the dataset in the first layer, after which in the

second layer the superior algorithm can be predicted.

4. Algorithm Selection via Complexity Classification

To study the utility of the double-layered framework, we conducted an experiment on UCI

datasets. To expand our problem space, we utilised the Error-Correcting Output Code

ensemble[11] to convert multiclass datasets into many binary datasets, thus obtaining 9139

UCI datasets to experiment on. For the expertise space, there were three possible outcomes:

algorithm 1 being superior, algorithm 2 being superior or a case of draw. These three

outcomes were used as labels and were computed for all pairs of the 6 algorithms (15

expertise spaces) through a two-tailed t-test by random sampling 100 times for all UCI

datasets. Then, the 11 chosen meta-features were computed to classify the UCI datasets into

their respective complexity cluster through k-means. An overarching 10 x 10 fold cross

validation model was built, and in each iteration the folds were divided into training (9 folds)

and testing (1 fold) sets. Then, each training set was further divided into a new training and

validation set to select the best performing algorithm selection model by choosing a value of

k for kNN and a meta-feature set out of the following 3 options:

1. Set A: Classical (statistical and information theoretic) meta-features

2. Set B: Decision tree based meta-features

3. Set C: Complexity based meta-features

Each complexity specific algorithm selection model for a certain meta-feature set is trained in

a wrapper like kNN model where the value of varies from 2 till 10. The best performing𝑘

model out of all the meta-features and the corresponding value is chosen by comparing the𝑘

accuracies of all the models when tested on the validation set. The best performing

complexity specific algorithm selection model for each cluster (2 layered) is then compared
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to the baseline accuracy (1 layered), which is the best algorithm selection model over all the

datasets for each algorithm pair by calculating the accuracy on the test set.

Table 5. The two-layered vs one-layered framework

Based on our results we can conclude that the accuracy of the complexity specific

two-layered model is either comparable or an improvement to the baseline one layered

model. Hence, our proposed two-layered framework is a practical substitute for the algorithm

selection problem.

Table 6. Cluster wise accuracy (green: equal or more than the baseline, red: less than the baseline)

That said, in the cluster sets, although for all problems, two or more clusters performed

significantly better than the baseline accuracy, the other clusters did not. From this, we may

infer that the better performing clusters contain key representative datasets which have

distinct complexities, and consequently, further hypothesise that the clusters with poorer

performance inadequately characterise specific categories of dataset complexity.

5. Future Work

The two-layered framework has yielded results that are slightly better than baseline.

However, as noted certain cluster specific models perform worse. Thus, our future work

includes examining these clusters to analyse their characteristics and acquire an insight about

the key datasets which represent complexity.
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7. Appendices

Appendix A
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Appendix B

Classical meta-features Decision tree

meta-features

Complexity

meta-features

ClassEnt treewidth overlapping.F1

AttrEntMin treeheight overlapping.F1v

AttrEntMean NumNode overlapping.F2

AttrEntMax NumLeave overlapping.F3

JointEnt maxLevel overlapping.F4

MutInfoMin meanLevel neighborhood.N1

MutInfoMean devLevel neighborhood.N2

MutInfoMax ShortBranch neighborhood.N3

EquiAttr meanBranch neighborhood.N4

NoiseRatio devBranch neighborhood.T1

StandardDevMin maxAtt neighborhood.LSCAvg

StandardDevMean minAtt linearity.L1

StandardDevMax meanAtt linearity.L2

SkewnessMin devAtt linearity.L3

SkewnessMean - dimensionality.T2

SkewnessMax - dimensionality.T3

KurtosisMin - dimensionality.T4

KurtosisMean - balance.C1

KurtosisMax - balance.C2

- - network.Density

- - network.ClsCoef

- - network.Hubs


